
VOD/SOS OVERVIEW

Veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) is a potentially life-threatening complication following hematopoietic cell transplantation.

Veno-Occlusive Disease/Sinusoidal Obstruction Syndrome (VOD/SOS)

High mortality rates are seen in VOD/SOS with renal or pulmonary dysfunction

A >80% mortality rate is associated with the most advanced forms of VOD/SOS^{1,2} highlighting the importance of early diagnosis

Incidence varies based on risk factors (eg. age, primary disease, and HCT conditioning regimen) VOD/SOS is estimated to occur in2:

Adults (~10%)

Pediatric patients (~20%)

Risk factors for VOD/SOS can include3:

Pretransplant factors

 Younger age Pre-existing hepatic

GO or InO

- conditions Underlying diagnosis Prior treatment with
- Prior abdominal radiation Genetic predisposition Karnofsky index <90%
 - Impaired pulmonary

Transplant-related factors

- Unrelated/HLA mismatch
 - regimens Total body irradiation

Obstruction of hepatic sinusoidal flow results in sinusoidal hypertension and VOD/SOS symptoms

Four common VOD/SOS symptoms^{2,5-8,a}

VOD/SOS without hyperbilirubinemia has been reported in:

15% of adult patients9

Henatomegaly of

~30% of pediatric patients^{6,9,10}

VOD/SOS is caused by endothelial cell (EC) activation and injury after HCT or chemotherapy4

Accumulation of toxic metabolites triggers EC activation and injury

Activated ECs: 1 Procoagulant factors Inflammatory mediators ↑ Metalloproteinases

Damaged ECs: **1**Heparanase ■ Cytoskeletal structure Gaps in the endothelium

Deterioration of the endothelium leads to sinusoidal narrowing and blockage by embolized ECs

Signs of VOD/SOS often peak within the first weeks after HCT.

but onset of VOD/SOS beyond Day 21 (late-onset) has been reported

In a large prospective study, late-onset VOD/SOS was observed in11:

17% (95/570) of pediatric patients

39% (169/430) of adults

Diagnostic criteria for VOD/SOS have evolved

to allow for earlier detection to improve outcomes

	Baltimore ¹²	Modified Seattle ¹³	EBMT ¹⁴	EBMT ²	Mahadeo ⁷	Cairo/Cooke ⁸
Patient population	Age agnostic	Age agnostic	Adult	Pediatric	Pediatric	Age agnostic
No time constraint to diagnose VOD/SOS (>21 days)			√	\checkmark	✓	\checkmark
Recognizes anicteric VOD/SOS		\checkmark	\checkmark	\checkmark	\checkmark	√
Includes refractory thrombocytopenia				\checkmark	\checkmark	\checkmark
Includes abdominal ultrasound ^b			\checkmark	\checkmark	\checkmark	\checkmark
Includes Doppler ultrasound imaging ^c			(probable VOD/SOS)		Not recommended	✓
Hepatic wedge pressure			\checkmark		Not recommended	✓ ^d
Biopsy			\checkmark		Not recommended	✓d

rences: 1. Coppell JA, et al. Biol Blood Marrow Transplant. 2010;16(2):157-168. 2. Corbacioglu S, et al. Bione Marrow Transplant. 2018;53(2):138-145. etabologib S, et al. Biol Bione Marrow Transplant. 2019;27(1):1271-1280. 4. Hildebrandt CC, Chao N. Br. J. Hamadeo No. 1609:560-579. 5. Carreras E. Haematol. 2015;61(4):461-491. 6. Myers KC, et al. Biol Blood Marrow Transplant. 2015;21(2):379-381. 7. Mahadeo KM, et al. Lancer Haematol. 2017;7(1):681-672. 8. Cairo MS; et al. Br. J. Hamadeo KM, et al. Lancer Haematol. 2016;7(1):481-491. 8. Myers KC, et al. Br. J. Carrow MS; et al. Br. J. Hamadeo KM, et al. Lancer Haematol. 2016;7(1):482-1349. 8. Corbacoglu S, et al. Biol Blood Marrow Transplant. 2010;27(1):342-1349. 8. Myers KM, et al. Lancer Haematol. 2016;16(1):481-481. 2. Jones KM, et al. Transplantation. 1987:44(6):778-783 13. McDonald GB, et al. Ann Intern Med. 1993:118(4):255-267, 14. Mobily M, et al. Bone Marrow Transplant, 2023:58(7):749-754

